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Sudden decay of indirect exchange coupling between magnetic atoms on carbon nanotubes
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Indirect exchange coupling plays a central role in determining the magnetic order in systems composed of
adsorbed magnetic moments on a metallic host. For low-dimensional metallic structures, such as nanotubes,
this interaction is predicted to decay rather slowly. Ab initio calculations have nevertheless been unable to
reproduce this prediction. To clarify this matter, we make use of a simple analytical expression for the indirect
exchange coupling that, on the one hand, confirms the long ranged nature of this interaction, and, on the other
hand, points to situations in which the coupling may display unexpectedly shorter ranges. We show that the
interaction range depends rather sensitively on the location of the magnetic moments, which explains the
difficulty in probing the long range character of the indirect exchange coupling from standard ab initio

calculations.
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In the continuous search for materials that can sustain our
incessant demand for smarter, faster and more efficient com-
puters, the field of magnetoelectronics appears as a promis-
ing alternative. Also known as spintronics, this has been a
field of research with strong levels of investment over the
past decade and with tremendous potential for technological
applications. When combined with systems of reduced di-
mensionality, such as thin films, nanowires, and molecular
structures, this field is expected to pave the way to the pro-
duction of nonvolatile computer memories, extremely effi-
cient magnetic sensors, and magnetic materials with en-
hanced information storage capacity, to name but a few.

Carbon nanotubes are one prime example of low-
dimensional structures that are potentially useful for their
magnetotransport properties. The ability to produce sizable
changes in the conductance of a nanotube due to an applied
magnetic field is one of the driving forces in the research of
magnetic properties of carbon-based structures.!> For that
purpose, nanotubes must interact with magnetic foreign ob-
jects that lift the intrinsic spin balance of a nonmagnetic
material, such as carbon. Substrates,>* substitutional
impurities,® adsorbed atoms,®’ and nanoparticles® are some
of the different magnetic foreign objects that can interact
with carbon nanotubes. Among those, transition-metal mag-
netic adatoms have been reported to produce noticeable
changes in the spin-dependent electronic structure of carbon
nanotubes.®® Furthermore, the formation of defect-induced
magnetic moments in carbon-based materials appears as an
additional possibility to manipulate the magnetic response of
these systems.’

Motivated by the interaction of carbon nanotubes with
magnetic objects, we have recently addressed the problem of
indirect exchange coupling (IEC) between localized mag-
netic moments mediated by the conduction electrons of
nanotubes.!® More specifically, in Ref. 10, we have consid-
ered how two magnetic adatoms attached to the walls of a
nanotube and separated by a distance D are mutually
coupled. Surprisingly, we found that the coupling lacks the
typical oscillations observed in indirect interaction of mag-
netic objects embedded in metallic hosts. We have explained
this lack of oscillations as a commensurability effect respon-
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sible for hiding the truly oscillatory character of the IEC.
Furthermore, we have also reported this indirect interaction
as being of very long range and argued that this may be
further explored to control the response of magnetic doping
agents. In particular, the predicted 1/D scaling of the cou-
pling implies that the magnetic moments of adatoms are able
to feel each other’s presence even when they are very far
apart. Such a slow decaying rate appears as a consequence of
the intrinsic dimensionality of the nanotube and should,
therefore, be common enough to be seen in a variety of com-
binations of nanotubes and magnetic adatoms. Nevertheless,
this ubiquity has not been observed. In fact, first-principles
calculations have been unable to reproduce the claimed long
ranged interaction experienced by magnetic adatoms on
these materials."!

It is the goal of this paper to clarify that the IEC between
localized moments on nanotubes is indeed long ranged but
also to show that there are situations in which the magnetic
coupling may decay rather abruptly. We show that the latter
is rather common in the case of nanotubes, which explains
the difficulties in probing the long range of the coupling by
first-principles calculations. In doing so, we also identify that
differences in the range of the IEC may give indications
about where the magnetic moments are located with respect
to the underlying carbon lattice. Combined with the ability to
control the IEC through doping,'® we argue that changes in
the range of the magnetic interaction may be externally con-
trolled. In what follows, we provide a simple expression for
the IEC between two adatoms on a nanotube. The simplicity
of this expression allows us to trace the dependence of the
coupling on the adatom separation, leading us to an analyti-
cal expression that confirms the general conclusion that the
IEC on one-dimensional hosts does decay rather slowly. Fur-
ther investigations of this expression point to the cases in
which the range of the magnetic interaction may be dramati-
cally reduced.

We consider two magnetic atoms, labeled A and B, at-
tached to the walls of an infinitely long carbon nanotube and
schematically represented in Fig. 1. Magnetism in these at-
oms is driven by an intra-atomic Coulomb interaction that,
when treated in mean-field approximation through a self-
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FIG. 1. (Color online) Schemetic representation of an armchair
nanotube with two magnetic adatoms. The arrows indicate the di-
rection of their magnetic moments.

consistent procedure, can be described by an effective spin-
dependent potential located at the atomic positions. In this
way, the electronic structure of the entire system is well de-
scribed by a Hamiltonian in a basis of localized atomic or-
bitals. In such a basis, this tight-binding-like Hamiltonian is
fully determined by the on-site potentials and hopping inte-
grals.

We assume that the magnetic moments of the individual
adatoms are initially parallel, hereafter referred to as the fer-
romagnetic configuration (as schematically illustrated in Fig.
1). In this configuration, the Hamiltonian of the entire system
written in the basis |j) of atomic orbitals centered at a site j

is given by H=Hy;+H,+Hyz+V,, where I:INT=E.j,j,|j>'y(j’|
is the Hamiltonian of the individual nanotube, H,=|A)e(A|
and Hy=|B)ey(B| are the Hamiltonians associated with the

atoms A and B, respectively, and Vo=3,{|A)¢|+|€)A|}
+3,t7{|B)(€'|+|€")(B|} refers to the coupling between the
adatoms and the nanotube. The parameters v, €4, €5, and ¢
are all matrices in spin and orbital spaces and correspond to
the hopping between nearest-neighbor sites in the nanotube,
the on-site potentials of atoms A and B, and the hopping
between the nanotube atoms and the adatoms, respectively.
Likewise, the basis |j) represents vectors in the same linear
space. It is evident from the expressions above that sites j
=A and j=B label the two adatoms and the indices € and €’
label the nanotube sites that are coupled to those respective
atoms. As we shall see, depending on the selection of which
carbon atoms are connected to the magnetic adatoms, one
may obtain totally different results for the indirect exchange
coupling.

We define the indirect coupling as the amount of energy
required to rotate one magnetic moment relatively to the
other by an angle 7. In other words, it is defined as the
energy to take the moments from the ferromagnetic configu-
ration to the situation in which both moments are oppositely
aligned, also referred to as the antiferromagnetic configura-
tion. The energy required to rotate one of the moments by an
angle 6 is given by the following expression:'’

1(” 1
Acﬁﬁ):—fﬁdm[m}lm’[‘rln[l +2V)2C(l

— cos 0)G), 5()Gp 4(0)], (1)

where 6 is the angle of rotation and V, is a matrix in orbital
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space representing the strength of the local exchange poten-
tials. G;’e(w) represents the propagator between sites j=¢€
and j=m for electrons of spin o and energy w in the ferro-
magnetic configuration, and the trace is over orbital indices.
The fraction within brackets is the Fermi function, where 8
=1/kgT, kg is the Boltzmann constant, 7 is the temperature,
and u is the Fermi energy. The coupling is therefore ex-
pressed by A&(m).

For the sake of simplicity, the electronic structure of the
system will be treated within the single-band tight-binding
model. The expressions above are very general and by no
means restricted to such a simple case. The results obtained
here can be easily extended to a multiorbital description but
bring no qualitative difference. This is justified by the fact
that the main features of the indirect exchange coupling are
predominantly determined by the extended electrons of the
host, in this case the nanotube, whose electronic structure is
known to be well reproduced by a single-band tight-binding
model. With transition-metal atoms in mind, the adatoms are
described by a five-fold degenerate d band with the appro-
priate occupation to represent typical magnetic materials. In
this way, rather than matrices in orbital indices, all quantities
in the integrand of Eq. (1) become scalar.

The indirect coupling AE(7r) can be calculated by insert-
ing the appropriate Green function matrix elements GI,,B(w)
and Gg’ 4(w) into Eq. (1) and evaluating the corresponding
energy integral. Since we are interested in assessing how fast
the indirect coupling decays, we must investigate how Eq.
(1) depends on the adatom separation D. A closer inspection
shows that the only D dependence in the expression for the
coupling lies in the Green function matrix elements GI,,B(w)
and G} ,(w). This becomes more evident when treating the

potential \A/C as a perturbation and using Dyson’s equation to
express how the Green function matrix elements in question
are written in terms of those associated with the magnetic
atoms and nanotubes in isolation. It is clear that the D de-
pendence of the coupling is entirely contained within this
function. More specifically, the dependence on adatom sepa-
ration enters as a sum over propagators of an isolated nano-
tube G,y where the sums ¢,¢’ extend over all atoms in
contact with adatoms A and B, respectively. We, therefore,
define a function I’ (a”Z such that T’ (a’g=t222 ¢1219¢.¢1» wWhere n
is the number of connections each adatom makes to the
nanotube host and 7 is the hopping integral between the ada-
tom and carbon atom. For a single connection, F(a{,z reduces
to a single propagator. Note that the integers € and €' label
the carbon atoms that are connected to adatoms A and B,
respectively. We can also define similar sums FE;,'()I’FE;’,’;);’
which are the corresponding sums over matrix elements link-
ing atoms connected to the same adatom and as such contain
no D dependence.

With this definition, the expression for G{ ; can be written
as

Gig= gXAFa,bggB<(l = gaalaa)(1 - ggBFb,b)< 1

_ gXAFa,th,aggB ) )_1
(1 - gXAFa,a)(l - ggBFb,b)

()
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FIG. 2. (Color online) (top) Real (solid line) and imaginary
(hatched line) parts of GL’BG};, 4 and (bottom) Trln(l
+4V§GL’BG§! A) as a function of the adatom separation D evaluated
at w=0.1y. Both functions are seen to oscillate with the same
periodicity.

The integrand in Eq. (1) can be expected to oscillate as a
function of D with the same periodicity as that of the product
GL,BG%;’A given by Eq. (2). This is confirmed by Fig. 2,
showing the D dependence of both the integrand of Eq. (1)
and of the product mentioned above for the case in which
each adatom is connected only to a single nanotube site.
Both functions vary with the distance D in an oscillatory
fashion and have exactly the same periodicities, although the
oscillation periods depend on the precise choice of energy w.

When integrated over energy, the oscillations displayed
by the integrand are likely to interfere both destructively and
constructively, determining the overall behavior of the indi-
rect coupling as a function of the adatom separation. To
prove this point explicitly, we expand part of the integrand
(for =) in a Fourier series of the type

1 :
—TrIn[1 +4V2G) (0)G} (0)]= 2 C,(w)e’@n P (3)
™ m

leaving us with the following expression for the coupling:

o ©)e'Cn(@D
A&(m) =Im E J dw{cm();]

1 + eBlo-w) )

C,(w) and Q,,(w) are the Fourier coefficents and corre-
sponding wave vectors of the integrand for a given energy w.
The integral above can be evaluated by assuming that as-
ymptotically (D> 1), the dominant contribution comes from
the energies surrounding the Fermi energy w=pu. This be-
comes evident when the integral is replaced by a contour
integral in the upper half of the complex energy plane. In this
case, the poles of the integrand are given by those that vanish
the denominator of the Fermi function, the so-called Matsub-
ara frequencies. They are w,=pu+i(2p+1)7kgT, where p is
an integer that labels the different poles. Given that the Fou-
rier coefficients are slowly varying functions of the energy,
C,(w) can be replaced with C,,(u). Moreover, when ex-
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panded in a Taylor series around w=u, the wave vector
0,.(w) can be written as Q,,(w)=0,,(u)+0, (w—u), where
Q,, is the energy derivative of Q,, evaluated at the Fermi
level. Therefore, Eq. (4) may be written as

o~ Q@)D

AE(m) =Im Y, C,,()e'@n P f ’ do (5)

1 + eBlo—m"

By summing over all the residues, one then finds that the
IEC becomes

C iQm(M)Dk T C iQm(/—")D
A&(m) =Im E .m(,U«)e ’ Bt m E m(,U«),e
m Sinh(2kzTQ,,7D) " 2Q,,mD

)

(6)

where the last expression on the far right corresponds to
taking the low temperature limit. It is clear that in the
asymptotic limit of large values of D, each Fourier compo-
nent m contributes to the IEC with a slowly decaying oscil-
latory function proportional to cos(¢D)/D. Bearing in mind
the generality of the arguments used above, Eq. (6) is a con-
vincing result that corroborates our earlier statement that the
IEC should display long ranged features and decay rather
slowly with the adatom separation. While this statement is
true with quite some generality, there are specific cases in
which a faster decay is observed. These correspond to the
Fourier coefficients, C,,(x) in Eq. (4) vanishing. If this oc-
curs, to order p, say, it becomes necessary to expand the
coefficients about w=pu and Eq. (5) becomes

(= 1)? d’C, () 'nWD

AE(m) =1
(m=lm 2 0T
df © Q@)D
P | T e M

The energy dependence is entirely contained within the
curly brackets which has exactly the same form as Eq. (5) so
the sum over the residues leads to exactly the same decay
rate as before. The higher order decay is introduced by the
subsequent differentiation with respect to D. We can then
write the following general result. If C,,(w) vanishes to order

P

arc iQ,,(w)D
AE(m) =~Tm Y, 2= e
w Ao’ |2, 200, aDP

(8)

For the case where C,,(w) # 0, then p=0 and Eq. (8) reduces
to the result previously obtained in Eq. (6). Equation (8)
demonstrates clearly that the rate of decay is determined by
the leading order term surviving when the Fourier coeffi-
cients are expanded about w= . For each Fourier coefficient
to vanish in this fashion, the function itself must vanish at
o=p. This requires that G ,=0, which in turn can only be
satisfied for F(a'f,)](,u,)=0. This is the condition for observing
short ranged decays in the coupling.

To fully elucidate the conditions under which this might
occur, it is useful to consider the different cases shown in
Fig. 3: the case where the adatom lies atop a single carbon
atom (n=1), at a bridge site connecting a pair of atoms (n
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FIG. 3. Three possible impurity locations: atop a single carbon
atom, at a bridge site connecting two carbon atoms, and at the
center of a hexagon of carbon atoms.

=2) and finally at the center of a hexagon of carbon atoms
(n=6). The stability of transition metal adatoms in each of
these positions has been thoroughly examined in. Refs. 12
and 13. The functional form of Eq. (2) is the same in each
case; the only difference being the precise form of FZ’Z for
each of the three values of n.

In Fig. 4, we plot I‘f;f,)](,u,D) as a function of D for the
different values of n. For a given n, there are °C, distinct
connections which the adatom can make with surrounding
carbon atoms. Most of these cases will not bring about any
qualitative difference in behavior. Obviously, for n=6, only a
single connection can be made. We see from Fig. 4 that n
=6 is the only value for which the function vanishes for all
D. To understand why this should be the case, we can em-
ploy the analytic expressions for the matrix element between
any two propagators on a pristine (N, N) nanotube developed
in Ref. 10. It is not necessary to consider the exact quantita-

0.3
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-0.2

0 12 4 16
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FIG. 4. (Color online) Real (a) and imaginary (b) parts of T as
a function of D for different values of n. The solid line indicates the
case of n=1. For n=2, two inequivalent bridge positions are con-
sidered, shown as hatched lines, with the squares and diamonds
corresponding to impurities located between atoms {1,2} and {2,3},
respectively (as labeled in Fig. 5). For the case of n=6, the data
points are represented by triangles. The function is seen to vanish
identically only for n=6 (see text). In all cases, I'"(D) is written in
units of inverse nearest neighbor hopping, y~!.
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FIG. 5. Two hexagons of carbon atoms whose centers are sepa-
rated by an amount Da/2 along the tube’s longitudinal direction.
The atoms are located on six distinct lines labeled —1,0,1 and D
—1,D,D+1. The separation between adjacent planes is a/ 2j. The
hexagon atoms are labeled from 1 to 6 in the anticlockwise
direction.

tive expression since its form is somewhat convoluted and
we need only make use of the the following salient fact: For
a given energy o, the Green’s function will oscillate as a
function of D, with each nanotube subband contributing a
period of oscillation determined by its wave vector k(w).
Around w=u=0, only two subbands, corresponding to elec-
trons propagating along the tube’s longitudinal axis, cross the
Fermi surface; the contributions from the other modes are
strongly attenuated. The periods of these two oscillations are
*44/3a at u=0. Since, as mentioned above, these modes
correspond to electrons propagating along the tube axis, the
matrix elements will depend only on the longitudinal sepa-
ration of the adatoms; any separation in the circumferential
direction will vanish from the equations.

Furthermore; in an armchair nanotube, the longitudinal
separation between any two carbon atoms must be an integer
multiple of a/2 (Fig. 5). It follows that if the carbon atoms
lie on consecutive lines along this axis, then the sum over the
Green function matrix elements will vanish identically since
each oscillatory component is phase shifted by an amount
2/3. A necessary condition for this to occur is that n is a
multiple of 3. This is not sufficient for n=3 since the atoms
must lie on three separate lines. In fact, a further requirement
is that the three atoms are located at equivalent points on the
underlying graphene sheet (atom labels all even or all odd in
Fig. 5). The case of n=3 is most likely unphysical but it is
useful in understanding why I'©(w) vanishes. Since the sum
over propagators linking any atom in A(B) with any three
atoms on B(A), subject to each of the atoms on B(A) being
equivalent atoms on separate lines, then the sum over 36
individual matrix elements can be partitioned into 12 sepa-
rate terms, each of which vanishes. Explicitly G, +G3
+G¢5=0 and Gyr+Ge4+Ge=0, where € is any atom in
hexagon A, and the second index labels atoms in hexagon B
according to the scheme shown in Fig. 5. As a consequence,
I"®(u) vanishes for all D. This satisfies the condition for the
coupling to decay more rapidly than 1/D. How rapidly the
coupling, in fact, decays depends on p, the leading order
term of the Fourier coefficients C,,(«) surviving in Eq. (7).
Since the functions I'™(w) enter in Eq. (1) as quadratic
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FIG. 6. (Color online) Panel (a) shows the coupling as a func-
tion of separation D for the atop (dashed line, circles) and bridge
(solid line, squares) positions. A log-log plot of both functions (in-
set) demonstrates that the coupling decays as ~1/D (hatched line in
inset). For clarity, only every third point has been included in the
inset. Panel (b) shows the coupling for the center position. The rate
of decay is much greater, as evidenced by the inset, which shows
the log-log plot with (1/D)? as a guideline. Note that all couplings
are written in arbitrary units.

terms, the minimum value p can have is 2. However, it is
relatively easy to show that w=u=0 is additionally a station-
ary point of I'©(w). Therefore, the leading order term in Eq.
(7) will be the p=4 term.

Figure 6 shows the coupling &£(7r) as a function of D for
each of the three cases considered above. In both graphs, the
inset provides a log-log plot of the amplitude of the oscilla-
tions. All oscillate with a three atomic layer period, charac-
teristic of armchair nanotubes. The two functions in Fig. 6(a)
correspond to the adatoms lying at the atop and bridge posi-
tions (dashed and solid lines respectively). As expected, the
coupling decays with the standard 1/D dependence predicted
for a quasi-one-dimensional host. In Fig. 6(b), the adatoms
are located at the center position and the coupling is far more
rapidly suppressed. A log-log plot confirms that the decay
rate is, in fact, (1/D)>, which is exactly the prediction of Eq.
(8) for p=4.

First-principles calculations, carried out using the SIESTA
package, have been performed on a (4,4) nanotube with two
Mn atoms adsorbed on its surface. We adopted a generalized
gradient approximation (GGA) approach for the exchange
and correlation potentials.'* Table I shows the coupling val-
ues [J=A&(m)], calculated as the difference in total energy
between the ferromagnetic and antiferromagnetic configura-
tions. The calculations were performed for two different val-
ues of the adatom separation distance D, within a ten ring
unit cell. The last column contains the decaying exponent ()
obtained by imposing the condition that the coupling decays
according to the law 1/D¢. These results were obtained for
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TABLE 1. Ab initio results for the coupling [J=A&(m)] and
decaying exponent («) for two Mn atoms adsorbed on the (4, 4)
nanotube surface separated by a distance D. The adatoms are lo-
cated in the atop and center positions.

D J
Position (A) (eV) a
Atop 4.929 0.028 2.5
7.381 -0.027
Center 4.902 -0.063 4.9
7.290 -0.009

both atop and center positions. For the case of centrally lo-
cated atoms, the coupling was found to decay with an expo-
nent ~4.9, which agrees very satisfactorily with the tight-
binding predictions shown in Fig. 6(b). In contrast, ab initio
calculations for adatoms located in the atop position returned
an exponent ~2.5.!% In presenting these values, the follow-
ing two points should be made: the SIESTA calculations de-
scribe repeating systems of two adatoms in a ten ring unit
cell, whereas the tight-binding calculation models an infinite
system with two single impurities. The separations involved
(D<10a) are far from the asymptotic limit assumed above.
Without further simulations, particularly with larger unit
cells, it is difficult to be sure that exponents do in reality
possess such high values. Nevertheless, the fact that these
results agree so closely in with those of our empirical model
is remarkable.

In conclusion, by examining the IEC between adatoms
located at different positions on a nanotube host, we have
confirmed that, although the coupling is indeed in general
long ranged, there are cases where it may decay far more
abruptly than previously predicted.!® Accordingly, the frame-
work provided here, which encompasses both cases, can be
considered a generalization of our previous results.!? The
relative simplicity and transparency of the expressions en-
able not only the statement of a formal condition underpin-
ning any deviation from the standard behaviour, but also al-
low a more intuitive picture of why such deviations occur.

Of the three distinct locations where an impurity might
realistically be expected to position itself (atop, bridge, cen-
ter), the center site exhibits by far the most rapid decay
~1/D3. This is ultimately understood as resulting from a
commensurability between the propagating wave vectors at
©=0 (i.e., =4m/3a) and the number of surrounding atoms.
When this number is a multiple of 3, the contributions from
the 3°=9 (or 6°=36 in the case of six surrounding atoms)
relevant matrix elements can cancel each other out. In this
way, the abrupt decay can tell us something about the loca-
tion of the magnetic impurities. It should perhaps be re-
marked that such an occurrence might not be entirely coin-
cidental or indeed unique to armchair nanotubes. It may well
reflect an intrinsic property of lattices, in general. However,
such considerations are outside the scope of the present pa-
per. Finally, it is worth mentioning briefly the important role
this effect might play in the rapidly expanding field of
chemical sensing. Since the behavior of the coupling de-
pends so dramatically on the position of the adatoms within
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the host, this should, in principle, make it possible to clearly
identify the position and nature of the foreign object interac-
tion with the host. Alternatively, our results suggest that by
controlling the location where the adsorbed impurities are
positioned, we can engineer the range of the magnetic inter-
action on nanotubes and indirectly manipulate the overall
magnetic order of the system. Since temperature variations
are known to induce the migration of adsorbed impurities
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between different locations of the host, this could give an-
other dimension to the selectivity of magnetic properties in
low-dimensional systems.
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